Section 5.6: The Area Between Two Curves (Minimum Homework: 1 - 19 odds)
\#1 - 10:
a) Create the integral needed to find the shaded area
b) Find the shaded area. Round to 2 decimals as needed. (you may use your calculator to determine the area)

The function whose graph is represented by the dashed is $f(x)=4$
The function whose graph is represented by the solid line is $g(x)=x^{2}$

1a) $\int_{-2}^{2}\left(4-x^{2}\right) d x$
1b) 10.67
3) Find the shaded area.

The function whose graph is represented by the dashed is $f(x)=-x^{2}+8$ The function whose graph is represented by the solid line is $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}$

3a) $\int_{-2}^{2}\left(-x^{2}+8-x^{2}\right) d x=\int_{-2}^{2}\left(-2 x^{2}+8\right) d x$
3b) 21.33
5) Find the shaded area.

The function whose graph is represented by the dashed is $f(x)=-x^{2}+10$
The function whose graph is represented by the solid line is $g(x)=-x+4$

7) Find the shaded area.

The function whose graph is represented by the dashed is $f(x)=\sqrt{x}$
The function whose graph is represented by the solid line is $g(x)=x^{2}$

7a) $\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x+\int_{1}^{2}\left(x^{2}-\sqrt{x}\right) d x$
7b) $0.33+1.11=1.44$
9) Find the shaded area.

The function whose graph is represented by the dashed is $f(x)=x+4$ The function whose graph is represented by the solid line is $g(x)=6-x$

9b) $4+9=13$
\#11-16:
11) $f(x)=x+1$ and $g(x)=7-x$ on $[0,3]$.
a) Use a calculator to sketch a graph of both functions.
$f(x)=x+1$ dashed $g(x)=7-x$ solid

b) Determine the function that is the "top" function.
$g(x)$ is the "top" function in the shaded region
c) Create the integral needed to find the area between the curves.
$\int_{0}^{3}(7-x)-(x+1) d x=\int_{0}^{3}(7-1 x-1 x-1) d x=\int_{0}^{3}(-2 x+6) d x$
d) Find the area between the graphs over the given interval [abb]
 (You may use your calculator to compute the desired area.)
area $=9$
13) $f(x)=4 x+16$ and $g(x)=2 x^{2}+10$ on $[-1,3]$.
a) Use a calculator to sketch a graph of both functions.
$f(x)=4 x+16$ dashed $g(x)=2 x^{2}+10$ solid iongT

b) Determine the function that is the "top" function.
$f(x)=4 x+16$ is the top" function
c) Create the integral needed to find the area between the curves.
$\int_{-1}^{3}(4 x+16)-\left(2 x^{2}+10\right) d x=\int_{-1}^{3}\left(4 x+16-2 x^{2}-10\right) d x$
$=\int_{-1}^{3}\left(-2 x^{2}+4 x+6\right) d x$
d) Find the area between the graphs over the given interval [a,b] (You may use your calculator to compute the desired area.)

Area 21.33
15) $f(x)=x^{2}+6$ and $g(x)=x+8$ on $[-1,2]$.
a) Use a calculator to sketch a graph of both functions.
$f(x)=x^{2}+6$ dashed $g(x)=x+8$ solid

b) Determine the function that is the "top" function.
$g(x)=x+8$ is the top function.
c) Create the integral needed to find the area between the curves.
$\int_{-1}^{2}(x+8)-\left(x^{2}+6\right) d x=\int_{-1}^{2}\left(x+8-x^{2}-6\right) d x$
$\int_{-1}^{2}\left(-x^{2}+x+2\right) d x$
d) Find the area between the graphs over the given interval [a,b] (You may use your calculator to compute the desired area.)
area 4.5

